Advanced Mathematical Methods

WS 2023/24

1 Linear Algebra

Dr. Julie Schnaitmann
Department of Statistics, Econometrics and Empirical
Economics

Outline: Linear Algebra

$\underset{n \times n}{A}$ quadratic /square
1.8 Eigenvalues and eigenvectors
1.9 Quadratic forms and sign definitness $\leftarrow \underset{\text { symmetric }}{\text { matric }}$

Readings

- Knut Sydsaeter, Peter Hammond, Atle Seierstad, and Arne Strøm. Further Mathematics for Economic Analysis. Prentice Hall, 2008 Chapter 1

Online Resources

MIT course on Linear Algebra (by Gilbert Strang)

- Lecture 21: Eigenvalues and Eigenvectors https://www.youtube.com/watch?v=IXNXrLcoerU
- Lecture 22: Powers of a square matrix and Diagonalization https://www.youtube.com/watch?v=13r9QY6cmjc
- Lecture 26: Symmetric matrices and positive definiteness https://www.youtube.com/watch?v=umt6BB1nJ4w
- Lecture 27: Positive definite matrices and minima - Quadratic forms
https://www.youtube.com/watch?v=vF7eyJ2g3kU
1.8 Eigenvalues and eigenvectors

Find λ via the homogenous linear equation system

$$
(\underbrace{\boldsymbol{A}-\lambda \boldsymbol{I}}_{=\boldsymbol{B}}) \boldsymbol{x}=0
$$

unique solution

$$
\begin{aligned}
& \text { Unique solution } \quad \longleftrightarrow B^{-1} \text { exists } \\
& \left.\operatorname{det}(B) \neq 0 \Leftrightarrow \operatorname{lr}(B)=n \Leftrightarrow \operatorname{li}^{2}\right] \text { trivial }
\end{aligned}
$$

infinitely many

$$
\operatorname{det}(B)=0
$$

${ }^{-1}$ does nat exist
\qquad trivial
2. Linear Algebra
1.8 Eigenvalues and eigenvectors

The properties of a quadratic homogenous linear equation system imply that:

- in any case a solution does exist;
- if $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I}) \neq 0$, then $\overline{\boldsymbol{x}}=0$ is the trivial solution;
- only if $\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=0$ there is a non-trivial solution.

$$
\begin{aligned}
& \text { ex: } A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \\
& B=A-\lambda I_{2} \\
& \operatorname{det}(B) \\
& B=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
3-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right]_{\text {solve this equatich }} \\
& \operatorname{det}(B)=\left|\begin{array}{cc}
3-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right|=(3-\lambda) \cdot(2-\lambda)-1 \cdot 0 \stackrel{\vdots}{\doteq} 0 \quad \text { roots charadenistic } \\
& \lambda_{1}=3 \quad \lambda_{2}=2=6-2 \lambda-3 \lambda+\lambda^{2} \text { equation } \\
& \begin{array}{l}
=6-2 \lambda-3 \lambda+\lambda! \\
=6-5 \lambda+\lambda^{2} \stackrel{ }{=} 0
\end{array} \\
& \text { 2. Linear Algebra }
\end{aligned}
$$

1.8 Eigenvalues and eigenvectors

$$
A x=\lambda x
$$

$$
(A-\lambda I) x=0
$$

How do I find λ and x ?
(1) find eigenvalues: λ roots of the charactenstic equation

$$
|A-\lambda I|=0 \quad \rightarrow \lambda^{2}-a \lambda+b \stackrel{n}{=} 0
$$

\rightarrow solve for $\lambda_{1}, \ldots, \lambda_{n}$
(2) for each λ_{i}, find the corresponding eigenvectors x_{i}
$A x_{i}=\lambda_{i} x_{i} \rightarrow$ solve a LES
$\left(A-\lambda_{i} I\right) x_{i}=0 \rightarrow$ infinitely many
singular
2. Linear Algebra
1.8 Eigenvalues and eigenvectors

Determination of the eigenvalues via the characteristic equation:

$$
\begin{aligned}
& |\boldsymbol{A}-\lambda \boldsymbol{I}| \stackrel{!}{=} 0 \Longleftrightarrow \lambda_{1}=3(-1)^{n} \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\ldots+\alpha_{1} \lambda+\alpha_{0} \stackrel{!}{=} 0 \\
& \left|\begin{array}{cc}
3-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right|=(3-\lambda)(2-\lambda)^{\lambda_{1}=3}-1 \cdot 0 \stackrel{\lambda_{2}=2}{=} 0 \\
& A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \\
& =6-5 \lambda+\lambda^{2}-0 \\
& \operatorname{det}(A)=3 \cdot 2-1 \cdot 0 \\
& =6 \\
& \operatorname{det}(A) \operatorname{tr}(A) \\
& \operatorname{tr}(A)=3+2=5 \\
& \operatorname{det}(A)=6=\lambda_{1} \cdot \lambda_{2}=3 \cdot 2=6 \\
& \operatorname{tr}(A)=5=\lambda_{1}+\lambda_{2}=3+2=5
\end{aligned}
$$

Mitternachts formel (MNF)
2×2 quadratic formula:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& e x: \lambda^{2}-5 \lambda+6=0 \quad a=1, b=-5, c=6 \\
& \lambda_{1,2}=\frac{5 \pm \sqrt{25-4 \cdot 6}}{2}=\frac{5 \pm 1}{2}, \lambda_{1}=3 \\
&
\end{aligned}, \lambda_{2}=2, ~ l
$$

complex solution: $\sqrt{-(\cdot)}$

$$
\text { complex solution: } \quad \text { ex: } \lambda_{1}=5+2 i \quad \lambda_{2}=5-2 i
$$

1.8 Eigenvalues and eigenvectors

Determination of the eigenvalues via the characteristic equation:
(1) $|\boldsymbol{A}-\lambda \boldsymbol{I}|=0 \Longleftrightarrow(-1)^{n} \lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\ldots+\alpha_{1} \lambda+\alpha_{0}=0$
for every (real or complex) eigenvalue λ_{i} of the $(n \times n)$-Matrix \boldsymbol{A} we can calculate the respective eigenvector $\boldsymbol{x}_{i} \neq 0$ solving the homogenous linear equation system

$$
\begin{equation*}
\left(\boldsymbol{A}-\lambda_{i} \boldsymbol{I}\right) \boldsymbol{x}_{i}=0 . \tag{1}
\end{equation*}
$$

The properties of homogenous linear equation systems imply that the solution of eq. (1) is not unambiguous, i.e. for the eigenvalue λ_{i} we can find infinitely many eigenvectors \boldsymbol{x}_{i}.
1.8 Eigenvalues and eigenvectors
(2) solve for eigenkotors: $\lambda_{1}=3 \quad \lambda_{2} \quad\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$

$$
\begin{aligned}
& \lambda_{1}=3: \quad A x_{1}=\lambda_{1} x_{1}=3 x_{1} \quad 3 x+y=3 x \quad 3 x=3 x-1 x=a \\
& {\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 x \\
3
\end{array}\right] \rightarrow} \\
& \begin{aligned}
3 x+y & =3 x
\end{aligned} \quad 3 x=3 x \\
& \text { infinitely } \\
& \text { infinitely } \text { malutions } \\
& x_{1}=\left[\begin{array}{l}
a \\
0
\end{array}\right]
\end{aligned}
$$

normalized eigenvector length $=1$

$$
\begin{aligned}
& \left\|x_{1}\right\|=\sqrt{a^{2}+0^{2}}=a \\
& \tilde{x}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=x_{1} \cdot\left(\frac{1}{\left\|x_{1}\right\|}\right)
\end{aligned}
$$

1.8 Eigenvalues and eigenvectors

$$
\begin{aligned}
& \lambda_{2}=2: \\
& {\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x \\
2 y
\end{array}\right] \rightarrow} \\
& x_{2}=\left[\begin{array}{r}
-b \\
b
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
3 x+y^{2} & =2 x \\
& =2 y
\end{aligned}
$$

$$
x=-b
$$

$$
2 y=2 y \rightarrow y=b
$$

normalized version
1.8 Eigenvalues and eigenvectors

$$
T=\left[\begin{array}{ll}
\tilde{x}_{1} & \tilde{x}_{2}
\end{array}\right]
$$

\boldsymbol{A} ind \boldsymbol{B} (quadratic matrices of order n) are similar if a regular $(n \times n)$ - matrix C exists, such that

$$
\boldsymbol{B}=\boldsymbol{C}^{-1} \boldsymbol{A} \boldsymbol{C} . \quad A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right]
$$

A and B are simitar if
(1) Characteristic equation
C needs to
(2) same eigenvalues
(3) same determinant be invertible
ex:

$$
\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]=\Lambda=D^{\perp}=T^{-1} A T
$$

$$
C=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

2. Linear Algebra

1.8 Eigenvalues and eigenvectors

\boldsymbol{A} ind \boldsymbol{B} (quadratic matrices of order n) are similar if a regular ($n \times n$) - matrix C exists, such that

$$
\boldsymbol{B}=\boldsymbol{C}^{-1} \boldsymbol{A} \boldsymbol{C}
$$

Special case: symmetric matrices
For a symmetric $(n \times n)$-matrix \boldsymbol{A} it holds that the normalized eigenvectors $\tilde{\boldsymbol{x}}_{j}$ with $j=1, \ldots, n$ have the property
(1) ${\tilde{x_{j}}}_{j}^{\prime} \tilde{x}_{j}=1$ for all j and length 1
(2) $\tilde{\boldsymbol{x}}_{i}^{\prime} \tilde{x}_{j}=0$ for all $i \neq j$.

orthogonal
orthonormal
matrix
1.8 Eigenvalues and eigenvectors

Principle axis theorem /spectral decomposilicon
collecting the normalized eigenvectors $\tilde{\boldsymbol{x}}_{j}(j=1, \ldots, n)$ in a new matrix $\boldsymbol{T}=\left[\tilde{\boldsymbol{x}}_{1} \cdots \tilde{\boldsymbol{x}}_{n}\right]$ with the property $\boldsymbol{T}^{-1}=\boldsymbol{T}^{\prime}$ yields the diagonalization of \boldsymbol{A} as follows:

$$
\begin{aligned}
& A=T \Lambda T^{-1} \\
& \boldsymbol{D}=\underbrace{\boldsymbol{T}^{\prime} \boldsymbol{A} \boldsymbol{T}}_{\begin{array}{c}
\text { symmetric } \\
\text { matrices }
\end{array}}=\boldsymbol{T}^{-1} \boldsymbol{A} \boldsymbol{T}=\left[\begin{array}{cccc}
\Lambda & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right]=\Lambda \\
& A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \quad \Lambda=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right] \quad T=\left[\begin{array}{cc}
1 & -\frac{1}{\sqrt{2}} \\
0 & \frac{n}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

2. Linear Algebra
1.8 Eigenvalues and eigenvectors

Properties of eigenvalues

1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\boldsymbol{A}|=\prod_{i=1}^{n} \lambda_{i}$.
2) From 1.) it follows that a singular matrix must have at least

$$
\begin{aligned}
& \operatorname{det}(A)=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{n} \\
& \operatorname{det}(A)=0
\end{aligned}
$$

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues

1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\boldsymbol{A}|=\prod_{i=1}^{n} \lambda_{i}$.
2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_{i}=0$.
3) The matrices A and A^{\prime} have the same eigenvalues.

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues

1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\boldsymbol{A}|=\prod_{i=1}^{n} \lambda_{i}$.
2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_{i}=0$.
3) The matrices \boldsymbol{A} and \boldsymbol{A}^{\prime} have the same eigenvalues.

$$
\begin{aligned}
& \begin{array}{lll}
A^{k}=T & \Lambda^{k} T^{-1} & t_{t}=2^{-} \\
A^{2}=A \cdot A=T \wedge T^{-1} T, \wedge T^{-1} & \Lambda^{2}=\left[\begin{array}{cc}
\lambda_{1}^{2} & 0 \\
0 & \lambda_{m}^{2}
\end{array}\right]
\end{array}
\end{aligned}
$$

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues

1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\boldsymbol{A}|=\prod_{i=1}^{n} \lambda_{i}$.
2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_{i}=0$.
3) The matrices \boldsymbol{A} and \boldsymbol{A}^{\prime} have the same eigenvalues.
4) For a non-singular matrix \boldsymbol{A} with eigenvalues λ we have: $\left|\boldsymbol{A}^{-1}-\frac{1}{\lambda} \boldsymbol{I}\right|=0$.
5) Symmetric matrices have only real eigenvalues and orthogonal eigenvectors.

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues

1) The product of the eigenvalues of a $n \times n$ matrix yields its determinant: $|\boldsymbol{A}|=\prod_{i=1}^{n} \lambda_{i}$.
2) From 1.) it follows that a singular matrix must have at least one eigenvalue $\lambda_{i}=0$.
3) The matrices \boldsymbol{A} and \boldsymbol{A}^{\prime} have the same eigenvalues.
4) For a non-singular matrix \boldsymbol{A} with eigenvalues λ we have:

$$
\left|\boldsymbol{A}^{-1}-\frac{1}{\lambda} \boldsymbol{I}\right|=0 .
$$

5) Symmetric matrices have only real eigenvalues and orthogonal eigenvectors.

$$
T^{-1}=T^{T} \text { othonormal }
$$

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues
6) The rank of a symmetric matrix \boldsymbol{A} is equal to the number of eigenvalues different from zero.
7) The sum of the eigenvalues is equal to the trace:

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues
6) The rank of a symmetric matrix \boldsymbol{A} is equal to the number of eigenvalues different from zero.
7) The sum of the eigenvalues is equal to the trace: $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \lambda_{i}$.
8) It holds that the eigenvalues of A^{k} are λ_{i}^{k} for all $i=1, \ldots, n$ as $\boldsymbol{A}^{k}=\boldsymbol{T} \boldsymbol{\Lambda}^{k} \boldsymbol{T}^{-1}$

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues

6) The rank of a symmetric matrix \boldsymbol{A} is equal to the number of eigenvalues different from zero.
7) The sum of the eigenvalues is equal to the trace: $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \lambda_{i}$.
8) It holds that the eigenvalues of \boldsymbol{A}^{k} are λ_{i}^{k} for all $i=1, \ldots, n$ as $\boldsymbol{A}^{k}=\boldsymbol{T} \boldsymbol{\Lambda}^{k} \boldsymbol{T}^{-1}$.
9) A has n independent eigenvectors and is diagonalizable if all eigenvalues λ_{i} are distinct.

1.8 Eigenvalues and eigenvectors

Properties of eigenvalues

6) The rank of a symmetric matrix \boldsymbol{A} is equal to the number of eigenvalues different from zero.
7) The sum of the eigenvalues is equal to the trace: $\operatorname{tr}(\boldsymbol{A})=\sum_{i=1}^{n} \lambda_{i}$.
8) It holds that the eigenvalues of \boldsymbol{A}^{k} are λ_{i}^{k} for all $i=1, \ldots, n$ as $\boldsymbol{A}^{k}=\boldsymbol{T} \boldsymbol{\Lambda}^{k} \boldsymbol{T}^{-1}$.
9) \boldsymbol{A} has n independent eigenvectors and is diagonalizable if all eigenvalues λ_{i} are distinct.

$$
\Lambda=T^{-1} A T
$$

1.9 Quadratic forms and sign definiteness

Definitions

$$
f(x, y)=x y^{2}+x^{3}+y x^{2}
$$

\rightarrow form degree 3

- Degree of a polynomial
- Form of nth degree
- special case: quadratic form

$$
f(x)=7 x^{7}+2 x^{5}
$$

\uparrow
degree ${ }_{6} 7$

$$
f(x, y)={ }^{2} x y_{y, 7}^{b^{\prime}}
$$

degree $=2$

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}\right)=a_{11} x_{1}^{2}+2 a_{12} x_{1} x_{2}+222 x_{2}^{2} \quad \frac{\geq}{<} O \\
& >0 \text { positive } \\
& \text { definite } \\
& \geq 0 \\
& <0 \text { ' negathinte } \\
& \text { definite } \\
& \text { 2. Linear Algebra } \\
& \text { indefinites/21 }
\end{aligned}
$$

1.9 Quadratic forms and sign definitness

A quadratic form $Q\left(x_{1}, x_{2}\right)$ for two variables x_{1} and x_{2} is defined as

$$
Q\left(x_{1}, x_{2}\right)=\underset{(1 \times 2)(2 \times 2)(2 \times 1)}{\mathrm{x}^{\prime} \mathrm{Ax}}=\sum_{i=1}^{2} \sum_{j=1}^{2} \mathrm{a}_{i j} x_{i} x_{j}
$$

where $a_{i j}=a_{j i}$ and, thus,
with the symmetric coefficient matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right]$.
1.9 Quadratic forms and sign definitness
 for all

1.9 Quadratic forms and sign definitness

The quadratic form associated with the matrix A (and thus the matrix A itself) is said to be
positive definite, if $Q=x^{\prime} A x>0 \quad$ for all $x \neq 0$ positive semi-definite, if $Q=x^{\prime} A x \geq 0$ for all x negative definite, negative semi-definite,
if $Q=x^{\prime} A x<0 \quad$ for all $x \neq 0$
if $Q=x^{\prime} A x \leq 0 \quad$ for all x
Otherwise the quadratic form is indefinite.
A quadratic but nod symmetric
ex: $\begin{aligned}\left.A=\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right] \quad \begin{array}{rl}B=\frac{1}{2}\left(A+A^{\top}\right) & =\frac{1}{2}\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right] \\ & =\left[\begin{array}{ll}3 & \frac{1}{2} \\ \frac{1}{2} & 2\end{array}\right]\end{array}\right) .\end{aligned}$

1.9 Quadratic forms and sign definitness

The quadratic form associated with the matrix A (and thus the matrix A itself) is said to be
positive definite, if $Q=x^{\prime} A x>0 \quad$ for all $x \neq 0$ positive semi-definite, if $Q=x^{\prime} A x \geq 0$ for all x negative definite, negative semi-definite,
if $Q=x^{\prime} A x<0 \quad$ for all $x \neq 0$
if $Q=x^{\prime} A x \leq 0 \quad$ for all x
Otherwise the quadratic form is indefinite.
Note: For any quadratic matrix A it holds that $x^{\prime} A x=x^{\prime} B x$ with $B=0,5 \cdot\left(A+A^{\prime}\right)$, a symmetric matrix.

1.9 Quadratic forms and sign definitness

The quadratic form $Q(\boldsymbol{x})$ is

- positive (negative) definite, if all eigenvalues of the matrix A are positive (negative): $\lambda_{j}>0\left(\lambda_{j}<0\right) \forall j=1,2, \ldots, n$;
- positive (negative) semi-definite, if all eigenvalues of the matrix A are non-negative (non-positive): $\lambda_{j} \geq 0$ $\left(\lambda_{j} \leq 0\right) \forall j=1,2, \ldots, n$ and at least one eigenvalue is equal to zero;
- indefinite, if two eigenvalues have different signs.

1.9 Quadratic forms and sign definitness

Properties of positive definite and positive semi-definite matrices

1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
2) If A is positive definite, then A^{-1} exists and is positive definite.

1.9 Quadratic forms and sign definitness

Properties of positive definite and positive semi-definite matrices

1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
2) If A is positive definite, then A^{-1} exists and is positive definite.
3) If X is $n \times k$, then $X^{\prime} X$ and $X X^{\prime}$ are positive semi-definite.

1.9 Quadratic forms and sign definitness

Properties of positive definite and positive semi-definite matrices

1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
2) If A is positive definite, then A^{-1} exists and is positive definite.
3) If X is $n \times k$, then $X^{\prime} X$ and $X X^{\prime}$ are positive semi-definite.

1.9 Quadratic forms and sign definitness

Properties of positive definite and positive semi-definite matrices

1) Diagonal elements of a positive definite matrix are strictly positive. Diagonal elements of a positive semi-definite matrix are nonnegative.
2) If A is positive definite, then A^{-1} exists and is positive definite.
3) If X is $n \times k$, then $X^{\prime} X$ and $X X^{\prime}$ are positive semi-definite.
4) If X is $n \times k$ and $r k(X)=k$, then $X^{\prime} X$ is positive definite (and therefore non-singular).

Relationship bt. $A^{-1}, \operatorname{det}(A), \operatorname{rk}(A)$ and λ
A is invertible $n \times n$

- $\operatorname{det}(A) \neq 0$
$-\operatorname{rk}(A)=n$ full ic
- n linearly independent rows /columns
- LES: $A x=b$
unique solution x
- λi are nonzero
A is singular
- $\operatorname{det}(A)=0$
- $r k(A)<n$ deficient
- at least one $\lambda_{i}=0$
- Linear dependencies in A
- LES: $A x=b$ infinitely no solution $A x=0$

2. Linear Algebra
