

Chair of Statistics, Econometrics and Empirical Economics

Dr. Julie Schnaitmann

${ \begin{array}{c} {\bf S414} \\ {\bf Advanced\ Mathematical\ Methods} \\ {\bf Exercises} \end{array} }$

PROBABILITY AND DISTRIBUTION THEORY

EXERCISE 1 Probability and Distribution Theory

Given a continuous random variable X with:

$$f(x) = \begin{cases} 4ax & 0 \le x < 1\\ -ax + 0.5 & 1 \le x \le 5\\ 0 & \text{else} \end{cases}$$

Determine the parameter a such that f(x) is a density function of X. Calculate the corresponding distribution function and sketch it. Compute the expectation and the variance of X.

EXERCISE 2 Probability and Distribution Theory

The Federal Statistical Office assumes all values in the interval $2 \le x \le 3$ to be possible realizations of the random variable X: "Growth rate of the GDP". Moreover, the following function is assumed:

$$f(x) = \begin{cases} c \cdot (x-2) & 2 \le x \le 3\\ 0 & \text{else} \end{cases}$$

- a) Determine c such that the function f(x) is a density function of the random variable X.
- b) Compute the distribution function of the random variable X.
- c) Compute P(X < 2.1) and P(2.1 < X < 2.8).
- d) Compute $P(-4 \le X \le 3 | X \le 2.1)$ and show that the events $\{-4 \le X \le 3\}$ and $\{X \le 2.1\}$ are statistically independent.
- e) Compute the expectation, median and the variance of X.

EXERCISE 3 Probability and Distribution Theory

Show the Markov - inequality:

$$P(X \ge c) \le \frac{E[X]}{c}$$

for every positive value of c with X being strictly non-negative.

EXERCISE 4 Probability and Distribution Theory

$$\begin{array}{c|ccccc} & & X & \\ \hline 1 & 2 & 3 \\ Y & 1 & 0.25 & 0.15 & 0.10 \\ 2 & 0.10 & 0.15 & 0.25 \end{array}$$

- a) Compute the expectation and the variance of X and Y.
- b) Determine the conditional distributions of X|Y = y and Y|X = x.
- c) Determine the covariance and the correlation coefficient of X and Y.
- d) Determine the variance of X + Y.

EXERCISE 5 Probability and Distribution Theory

The joint probability function of X and Y is given by:

$$f(x,y) = \begin{cases} e^{-2\lambda} \cdot \frac{\lambda^{x+y}}{x!y!} & x, y \in \{0, 1, \ldots\} \\ 0 & \text{else} \end{cases}$$

- a) Determine the marginal distributions of X and Y.
- b) Determine the conditional distributions of X|Y = y and Y|X = x and compare them to the marginal distributions.
- c) Determine the covariance of X and Y.

Hint: $e^{\lambda} = \sum_{y} \frac{\lambda^{y}}{y!}$

EXERCISE 6 Probability and Distribution Theory

Suppose that x_u is the u percentile of the random variable X, that is, $F(x_u) = u$. Show that if f(-x) = f(x), then $x_{1-u} = -x_u$

EXERCISE 7 Probability and Distribution Theory

If $X \sim N(1000, 400)$ find:

- a) P(X < 1024)
- b) P(X < 1024|X > 961)
- c) $P(31 < \sqrt{X} < 32)$

EXERCISE 8 Probability and Distribution Theory

A fair coin is tossed three times and the random variable X equals the total number of heads. Find and sketch $F_X(x)$ and $f_X(x)$.

EXERCISE 9 Probability and Distribution Theory

The random variables X and Y are $N(\mu_x, \sigma_x^2, \mu_y, \sigma_y^2, \rho_{xy}) = N(3, 4, 1, 4, 0.5)$. Find f(y|x) and f(x|y).

Solution Exercise 1:

$$a = \frac{1}{10}$$

$$\mathbb{E}[x] = 2$$

$$var(x) = 1.1666\bar{6}$$

Solution Exercise 2:

a)
$$c = 2$$

b)

$$F(x) = \begin{cases} 0 & \text{for } x < 2\\ x^2 - 4x + 4 & \text{for } 2 \le x \le 3\\ 1 & \text{for } x > 3 \end{cases}$$

c)
$$P(X < 2.1) = \underline{0.01}$$

 $P(2.1 < X < 2.8) = 0.63$

d)

$$P\left(-4 \le X \le 3 | X \le\right) = \underline{1}$$

The events $A = \{-4 \le X \le 3\}$ and $B = \{x \le 2.1\}$ are independent if P(B|A) = P(B). We have: $P(A \cap B) = P(A) \cdot P(B|A) = P(B) \cdot P(A|B)$ with $P(A) = P(-4 \le X \le 3) = 1$, and $P(A|B) = P(-4 \le X \le 3|x \le 2.1) = 1$. Hence: $P(A \cap B) = P(B|A) = P(B)$ q.e.d.

- $\bar{x}[0.5] = 2 + \frac{1}{\sqrt{2}} = 2.7071$. $\bar{\mathbb{E}}[x] = \underline{2.66\overline{6}}$

 - $var[x] = \frac{1}{18} = 0.05\overline{5}$

Solution Exercise 3:

$$\mathbb{E}[x] = \int_{-\infty}^{c} x f(x) dx + \int_{c}^{\infty} x f(x) dx$$

$$\mathbb{E}[x] > \int_{c}^{\infty} x f(x) dx$$

$$\mathbb{E}[x] > c \int_{c}^{\infty} f(x) dx$$

$$> cP(X \ge c)$$

$$\frac{\mathbb{E}[x]}{c} = P(X \ge c) \text{ q.e.d.}$$

Solution Exercise 4:

a)
$$\mathbb{E}[x] = 2$$

 $\mathbb{E}[x] = 1.5$

b) The conditional probability distributions:

		x = 1	x = 2	x = 3
Conditional	y = 1	0.5	0.3	0.2
distribution $f(x y)$	y = 2	0.2	0.3	0.5
		x = 1	x = 2	x = 3
Conditional	y = 1	5/7	1/2	2/7
distribution $f(x y)$	y = 2	2/7	1/2	5/7

c)
$$\operatorname{cov}[x, y] = \underline{0.15}$$

d)
$$var[x + y] = 1.25$$

Solution Exercise 5:

a)
$$f(x) = \underbrace{e^{-\lambda} \frac{\lambda^x}{x!}}_{\text{and } f(y)} = \underbrace{e^{-\lambda} \frac{\lambda^y}{y!}}_{\text{max}}$$

b)
$$f(x|y) = f(x)$$

$$f(y|x) = f(y)$$

c)
$$cov[x, y] = 0$$

Solution Exercise 6: If
$$f(x) = f(-x)$$
 then $\int_{-\infty}^{-x_u} f(z)dz = \int_{x_u}^{\infty} f(z)dz$. From which follows that:

$$F(-x_u) = 1 - F(x_u) = 1 - u$$

Hence, $-x_u = x_{1-u}$ q.e.d.

Solution Exercise 7:

a)
$$P(X < 1024) = 0.8849$$

b)
$$P(X < 1024|X > 961) = 0.8819$$

c)
$$P(31 < \sqrt{x} < 32) = 0.8593$$

Solution Exercise 8:

$$f_X(x) = 0.5^3 {3 \choose x} = 0.5^3 \frac{3!}{x!(3-x)!}$$
$$F_X(x) = 0.5^3 \sum_{k=1}^x {3 \choose k} = 0.5^3 \sum_{k=1}^x \frac{3!}{k!(3-k)!}$$

Solution Exercise 9:
$$Y|X \sim N\left(\mu_y + \rho_{xy}\frac{\sigma_y}{\sigma_x}(x - \mu_x); \sigma_y^2(1 - \rho_{xy}^2)\right)$$
$$X|Y \sim N\left(\mu_x + \rho_{xy}\frac{\sigma_x}{\sigma_y}(y - \mu_y); \sigma_x^2(1 - \rho_{xy}^2)\right)$$