# EBERHARD KARLS <br> UNIVERSITAT TUBINGEN <br> Wirtschafts- Und <br> SOZIALWISSENSCHAFTLICHE FAKULTÄT 

Chair of Statistics, Econometrics and Empirical Economics Dr. Julie Schnaitmann

S414<br>Advanced Mathematical Methods

Exercises

## Probability and Distribution Theory

## Exercise 1 Probability and Distribution Theory

Given a continuous random variable $X$ with:

$$
f(x)= \begin{cases}4 a x & 0 \leq x<1 \\ -a x+0.5 & 1 \leq x \leq 5 \\ 0 & \text { else }\end{cases}
$$

Determine the parameter $a$ such that $f(x)$ is a density function of $X$. Calculate the corresponding distribution function and sketch it. Compute the expectation and the variance of $X$.

## Exercise 2 Probability and Distribution Theory

The Federal Statistical Office assumes all values in the interval $2 \leq x \leq 3$ to be possible realizations of the random variable $X$ : "Growth rate of the GDP". Moreover, the following function is assumed:

$$
f(x)= \begin{cases}c \cdot(x-2) & 2 \leq x \leq 3 \\ 0 & \text { else }\end{cases}
$$

a) Determine $c$ such that the function $f(x)$ is a density function of the random variable $X$.
b) Compute the distribution function of the random variable $X$.
c) Compute $P(X<2.1)$ and $P(2.1<X<2.8)$.
d) Compute $P(-4 \leq X \leq 3 \mid X \leq 2.1)$ and show that the events $\{-4 \leq X \leq 3\}$ and $\{X \leq 2.1\}$ are statistically independent.
e) Compute the expectation, median and the variance of $X$.

## Exercise 3 Probability and Distribution Theory

Show the Markov - inequality:

$$
P(X \geq c) \leq \frac{E[X]}{c}
$$

for every positive value of $c$ with $X$ being strictly non-negative.

## Exercise 4 Probability and Distribution Theory

\[

\]

a) Compute the expectation and the variance of X and Y .
b) Determine the conditional distributions of $X \mid Y=y$ and $Y \mid X=x$.
c) Determine the covariance and the correlation coefficient of $X$ and $Y$.
d) Determine the variance of $X+Y$.

## Exercise 5 Probability and Distribution Theory

The joint probability function of $X$ and $Y$ is given by:

$$
f(x, y)= \begin{cases}e^{-2 \lambda} \cdot \frac{\lambda^{x+y}}{x!y!} & x, y \in\{0,1, \ldots\} \\ 0 & \text { else }\end{cases}
$$

a) Determine the marginal distributions of $X$ and $Y$.
b) Determine the conditional distributions of $X \mid Y=y$ and $Y \mid X=x$ and compare them to the marginal distributions.
c) Determine the covariance of $X$ and $Y$.

Hint: $e^{\lambda}=\sum_{y} \frac{\lambda^{y}}{y!}$

## Exercise 6 Probability and Distribution Theory

Suppose that $x_{u}$ is the $u$ percentile of the random variable $X$, that is, $F\left(x_{u}\right)=u$. Show that if $f(-x)=f(x)$, then $x_{1-u}=-x_{u}$

## Exercise 7 Probability and Distribution Theory

If $X \sim N(1000,400)$ find:
a) $P(X<1024)$
b) $P(X<1024 \mid X>961)$
c) $P(31<\sqrt{X}<32)$

## Exercise 8 Probability and Distribution Theory

A fair coin is tossed three times and the random variable $X$ equals the total number of heads. Find and sketch $F_{X}(x)$ and $f_{X}(x)$.

## Exercise 9 Probability and Distribution Theory

The random variables $X$ and $Y$ are $N\left(\mu_{x}, \sigma_{x}^{2}, \mu_{y}, \sigma_{y}^{2}, \rho_{x y}\right)=N(3,4,1,4,0.5)$. Find $f(y \mid x)$ and $f(x \mid y)$.

## Solution Exercise 1:

$a=\frac{1}{10}$
$\mathbb{E}[x]=2$
$\operatorname{var}(x)=1.1666 \overline{6}$

## Solution Exercise 2:

a) $c=2$
b)

$$
F(x)= \begin{cases}0 & \text { for } x<2 \\ x^{2}-4 x+4 & \text { for } 2 \leq x \leq 3 \\ 1 & \text { for } x>3\end{cases}
$$

c) $P(X<2.1)=\underline{0.01}$
$P(2.1<X<2.8)=\underline{\underline{0.63}}$
d)

$$
P(-4 \leq X \leq 3 \mid X \leq)=\underline{\underline{1}}
$$

The events $A=\{-4 \leq X \leq 3\}$ and $B=\{x \leq 2.1\}$ are independent if $P(B \mid A)=P(B)$.
We have: $P(A \cap B)=P(A) \cdot P(B \mid A)=P(B) \cdot P(A \mid B)$
with $P(A)=P(-4 \leq X \leq 3)=1$,
and $P(A \mid B)=P(-4 \leq X \leq 3 \mid x \leq 2.1)=1$.
Hence: $P(A \cap B)=P(B \mid A)=P(B)$ q.e.d.
e) - $\bar{x}[0.5]=2+\frac{1}{\sqrt{2}}=2.7071$.

- $\mathbb{E}[x]=\underline{\underline{2.66 \overline{6}}}$
- $\operatorname{var}[x]=\underline{\underline{\frac{1}{18}=0.05 \overline{5}}}$


## Solution Exercise 3:

$$
\begin{gathered}
\mathbb{E}[x]=\int_{-\infty}^{c} x f(x) d x+\int_{c}^{\infty} x f(x) d x \\
\mathbb{E}[x]>\int_{c}^{\infty} x f(x) d x \\
\mathbb{E}[x]>c \int_{c}^{\infty} f(x) d x \\
>c P(X \geq c) \\
\frac{\mathbb{E}[x]}{c}=P(X \geq c) \text { q.e.d. }
\end{gathered}
$$

## Solution Exercise 4:

a) $\mathbb{E}[x]=2$
$\mathbb{E}[x]=1.5$
b) The conditional probability distributions:

|  |  | $x=1$ | $x=2$ | $x=3$ |
| :---: | :---: | :---: | :---: | :---: |
| Conditional | $y=1$ | 0.5 | 0.3 | 0.2 |
| distribution $f(x \mid y)$ | $y=2$ | 0.2 | 0.3 | 0.5 |
|  |  | $x=1$ | $x=2$ | $x=3$ |
| Conditional | $y=1$ | $5 / 7$ | $1 / 2$ | $2 / 7$ |
| distribution $f(x \mid y)$ | $y=2$ | $2 / 7$ | $1 / 2$ | $5 / 7$ |

c) $\operatorname{cov}[x, y]=\underline{\underline{0.15}}$
d) $\operatorname{var}[x+y]=1.25$

## Solution Exercise 5:

a) $f(x)=\underline{\underline{e^{-\lambda} \frac{\lambda^{x}}{x!}}}$ and $f(y)=e^{-\lambda \frac{\lambda^{y}}{y!}}$
b) $f(x \mid y)=f(x)$
$f(y \mid x)=f(y)$
c) $\operatorname{cov}[x, y]=0$

## Solution Exercise 6:

If $f(x)=f(-x)$ then $\int_{-\infty}^{-x_{u}} f(z) d z=\int_{x_{u}}^{\infty} f(z) d z$.
From which follows that:

$$
F\left(-x_{u}\right)=1-F\left(x_{u}\right)=1-u
$$

Hence, $-x_{u}=x_{1-u}$ q.e.d.

## Solution Exercise 7:

a) $P(X<1024)=0.8849$
b) $P(X<1024 \mid X>961)=0.8819$
c) $P(31<\sqrt{x}<32)=0.8593$

## Solution Exercise 8:

$$
\begin{gathered}
f_{X}(x)=0.5^{3}\binom{3}{x}=0.5^{3} \frac{3!}{x!(3-x)!} \\
F_{X}(x)=0.5^{3} \sum_{k=1}^{x}\binom{3}{k}=0.5^{3} \sum_{k=1}^{x} \frac{3!}{k!(3-k)!}
\end{gathered}
$$

## Solution Exercise 9:

$$
\begin{aligned}
& Y \left\lvert\, X \sim N\left(\mu_{y}+\rho_{x y} \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right) ; \sigma_{y}^{2}\left(1-\rho_{x y}^{2}\right)\right)\right. \\
& X \left\lvert\, Y \sim N\left(\mu_{x}+\rho_{x y} \frac{\sigma_{x}}{\sigma_{y}}\left(y-\mu_{y}\right) ; \sigma_{x}^{2}\left(1-\rho_{x y}^{2}\right)\right)\right.
\end{aligned}
$$

