Advanced Mathematical Methods

 WS 2023/24
4 Mathematical Statistics

Dr. Julie Schnaitmann
Department of Statistics, Econometrics and Empirical
Economics

Eberhard karls	
UNIVERSITAT	Wirtschafts- Und
TUBINGEN	SOZIALWISSENSCHAFTLICHE
FAKUlTÄT	

Outline: Mathematical Statistics

4.1 Random Variables
4.2 pdf and cdf
4.3 Expectation, Variance and Moments
4.4 Quantile
4.5 Specific probability distributions

Readings

- A. Papoulis and A. U. Pillai. Probability, Random Variables and Stochastic Processes. Mc Graw Hill, fourth edition, 2002, Chapters 1-4

Online References

MIT Course on Probabilistic Systems Analysis and Applied Probability (by John Tsitsiklis)

- Discrete RVs I: Concept of random variables, probability mass function, expected value, variance https://www.youtube.com/watch?v=3MOahpLxj6A
- Continuous RVs: probability density function, cumulative distribution function, expected value, variance https://www.youtube.com/watch?v=mHfn_7ym6to
- Discrete RVs II: Functions of RV, conditional probabilities, specific distribution, total expectation theorem, joint probabilities
https://www.youtube.com/watch?v=-qCEoqpwjf4

4.1 Random Variables

A random variable X takes on real numbers according to some distribution.

There are two types of random variables:
(1) discrete random variables

- e.g. coin toss, number of baskets scored out of n trials

(1) Bernoulli

4.1 Random Variables

A random variable X takes on real numbers according to some distribution.

There are two types of random variables:
(1) discrete random variables

- e.g. coin toss, number of baskets scored out of n trials
(2) continuous random variables
- e.g. financial returns

4.1 Random Variables

Discrete random variables
(2) Binomial distribution: n independent Bernoulli trials
X counts how many times I was successful out of n trials $H / T^{\text {\#tails }}$
ex: $n=3$

$$
\begin{array}{lll}
x=0 & 1 & x=0 \\
& & 3 \\
x=1 & & x
\end{array}
$$

$$
\operatorname{Pr}(X=k)=\pi^{k} \cdot(1-\pi)^{(n-k)}\binom{n}{k}
$$

4.1 Random Variables

Discrete random variables
(3) Geometric distributich
"How many" times do I fail before I succeed?"

$$
\operatorname{Pr}(x=k)
$$

$=(1-\pi)^{k} \cdot \pi$

$$
\begin{aligned}
& x=0^{d} \\
& x=1 \\
& x=2
\end{aligned}
$$

4.1 Random Variables

Discrete random variables
4.1 Random Variables

Random sample
(I) random variables
$\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is called a random sample if
(1) all draws X_{i} are independent
(2) and drawn from the same distribution, ie. they are identically distributed
\Rightarrow the draws are independently and identically distributed in short id
ex: coin toss: $n=10 \quad\left\{X_{1}, X_{2}, \ldots, X_{10}\right\}$ realization: $\left\{x_{1}, x_{4}, \ldots, x_{10}\right\}=\{T, H, H, T, \ldots, H\}$
4.2 Cumulative Distribution Functions

Probability distribution function: discrete case (pdf)

$$
\begin{aligned}
& \text { pdf } \\
& \text { realization/ } \\
& \text { pdf } \\
& \searrow \quad \text { specific outcome } \\
& f_{X}\left(x_{i}\right)=P\left(X=x_{i}\right)=\operatorname{Pr}\left(X=x_{i}\right) \\
& \text { rv. } \lambda \\
& \text { requirements: } \\
& \text { ex: } f_{x}\left(x_{i}\right)= \begin{cases}0.2 & x=0 \\
0.4 & x=2 \\
0.4 & x=3\end{cases} \\
& \text { - } 0 \leq P\left(X=x_{i}\right) \leq 1 \quad \begin{array}{ll}
& f_{x}(x) \\
0.4
\end{array} \\
& \begin{array}{ll}
\sum_{x_{i}} f_{X}\left(x_{i}\right)=1 & 0.3- \\
0.2
\end{array} \\
& \sum_{x_{i}} f_{x}\left(x_{i}\right) \\
& =0.2+0.4 \\
& +0.4=1 \\
& f_{x}(1)=0
\end{aligned}
$$

4.2 Cumulative Distribution Functions
(Probability) Density function: continuous case
not a probability $f_{X}(x)$ is not a probability as $P(X=x)=0$ = point mass is zero $\underline{\text { requirements: }}$

$$
P(x=c)=\int_{c}^{c} f_{x}(x) d x=
$$

- $P(a \leq X \leq b)=\int_{a} f_{X}(x) \mathrm{d} x \geq 0$
- $\int_{-\infty}^{\infty} f_{X}(x) \mathrm{d} x=1$
- $f_{X}(x) \geq 0$ non-negative

4.2 Cumulative Distribution Functions

Definition: Cumulative distribution function

The cumulative distribution function (cdf) of a random variable X is defined to be the function $F_{\mathbf{X}}(\boldsymbol{x})=P(\mathbf{X} \leq \mathbf{x})$, for $x \in \mathbb{R}$.
discrete:
$F_{X}\left(x_{i}\right)=\sum_{X \leq x_{i}} f_{X}\left(x_{i}\right)=P\left(X \leq \boldsymbol{X}_{i}\right)$
continuous:
$F_{X}(x)=\int_{-\infty}^{\boldsymbol{X}} f_{\mathbf{X}}(t) \mathrm{d} t=P(X \leq \boldsymbol{X})$
4.2 Cumulative Distribution Functions

4.2 Cumulative Distribution Functions

Continuous random variable

4.2 Cumulative Distribution Functions

Properties

1) $F_{X}(+\infty)=1 ; F_{X}(-\infty)=0$
2) $F_{X}(x)$ is a nondecreasing function of x :
if $x_{1}<x_{2}, F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)$ note: the event $\left\{X \leq x_{1}\right\}$ is a subset of $\left\{X \leq x_{2}\right\}$
3) if $F_{X}\left(x_{0}\right)=0$, then $F_{X}(x)=0 \quad \forall x \leq x_{0}$

4.2 Cumulative Distribution Functions

Properties

4) $P(X>x)=1-F_{X}(x)$ events $\{X \leq x\}$ and $\{X>x\}$ are mutually exclusive and $\{X \leq x\} \cup\{X>x\}=\Omega$
5) $F_{X}(x)$ is continuous from the right: $\lim _{x \rightarrow a^{+}} F_{X}(x)=F_{X}(a)$
6) $P\left(x_{1} \leq X \leq x_{2}\right)=F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} f_{x}(x) d x$
4.3 Expectation, Variance and Moments

Expectations of a random variable

$$
E[X]= \begin{cases}\sum_{x_{i}} x_{i} f_{x}\left(x_{i n}\right) & \text { if } x \text { is discrete } \\ \int_{-\infty}^{\infty} x f_{x}(x) \mathrm{d} x & \text { if } x \text { is continuous }\end{cases}
$$

ex:- coin tess: x unction of $x, \quad x=\frac{1}{2}$

$$
x=0
$$

$$
\pi=\frac{1}{2}
$$

$$
1-\pi=\frac{1}{2}
$$

$$
\begin{aligned}
E(x) & =1 \cdot p(x=1)+0 \cdot p(x=0) \\
& =1 \cdot \pi+0 \cdot(1-\pi)=\pi=\frac{1}{2}
\end{aligned}
$$

4.3 Expectation, Variance and Moments

Expectations of a random variable

$$
E[X]= \begin{cases}\sum_{x_{i}} x_{i} f_{X}\left(x_{i}\right) & \text { if } x \text { is discrete } \\ \int_{-\infty}^{\infty} x f_{X}(x) \mathrm{d} x & \text { if } x \text { is continuous }\end{cases}
$$

If $g(X)$ a measurable function of x, then:
$E[g(X)]= \begin{cases}\sum_{x_{i}} g\left(x_{i}\right) f_{x}\left(x_{i}\right) & \text { if } x \text { is discrete } \\ \int_{-\infty}^{\infty} g(x) f x(x) \mathrm{d} x & \text { if } x \text { is continuous }\end{cases}$

$$
\begin{aligned}
& \text { ex: } g(x)=x^{2} \\
& \mathrm{ccin}_{2} \text { toss } \\
& \begin{aligned}
x_{1}=1^{2} & x_{2}^{2}=0^{2} \\
& =0
\end{aligned} \\
& \begin{aligned}
E\left(x^{2}\right)= & 1^{2} \cdot P(x=1) \\
& +0^{2} \cdot P(x=0)
\end{aligned} \\
& =1^{2}-\pi \\
& +0 \cdot(1-\pi) \\
& =\pi
\end{aligned}
$$

4.3 Expectation, Variance and Moments

Calculation rules
constant not a riv.

- $E[a]=a=a \cdot \underbrace{P(X=a)}_{=1}=a$

$$
\begin{aligned}
& E[a]=a=a \cdot \underbrace{(x=a)}_{=1}=a \\
& E(a)=\int_{-\infty}^{\infty} a f_{x}(x) d x=a \int_{-\infty}^{\infty} f_{x}(x) d x=a
\end{aligned}
$$

4.3 Expectation, Variance and Moments

Calculation rules

- $E[a]=a$
- $E[b x]=b \cdot E[X]=\int_{-\infty}^{\infty} b \cdot x f_{x}(x) d x=b \underbrace{\int_{-\infty}^{\infty} x f_{x}(x) d x}_{=E(x)}$
- linear transformatio $=b \cdot E(X)$ $]=a+b E[X]$
4.3 Expectation, Variance and Moments

Calculation rules

- $E[a]=a$
- $E[b X]=b \cdot E[X]$
separate integrals
- linear transformation: $E[a+b X]=a+b E[X] \downarrow$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \frac{(a+b x)}{(x(x)} \cdot f_{x}(x) d x=\int_{-\infty}^{-\infty} a \cdot f_{x}(x) d x+\int_{\infty}^{\infty} b x f_{x}(x) d x \\
& =a \int_{-\infty}^{\infty} f_{f}(x) d x+b \int_{-\infty}^{\infty} x_{-E(x)} f_{x}(x) d x=a+b E(x)
\end{aligned}
$$

4.3 Expectation, Variance and Moments

Calculation rules

- $E[a]=a$
- $E[b X]=b \cdot E[X]$
- linear transformation: $E[a+b X]=a+b E[X]$
- $E\left[g_{1}(X)+g_{2}(X)\right]=E\left[g_{1}(X)\right]+E\left[g_{2}(X)\right]$
$E\left(b x+x^{2}\right)=E(b x)+E\left(x^{2}\right)=b E(x)+E\left(x^{2}\right)$
E(:) linear operator
4.3 Expectation, Variance and Moments

Variance of a random variable

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

Let $g(X)=(X-E[X])^{2}$
Variance operator is not linear

$$
\begin{aligned}
& \operatorname{Var}[x]=\sigma^{2}=E\left[(x-E[x])^{2}\right]=E(g(x)) \\
& = \begin{cases}\sum_{x_{i}}\left(x_{i}-E[x]\right)^{2} f_{x}\left(x_{i}\right) & \text { if } x \text { is discrete } \\
\int_{-\infty}^{\infty}(x-E[x])^{2} f_{x}(x) d x & \text { if } x \text { is continuous }\end{cases} \\
& \operatorname{Var}(a+b x) \neq a+b \operatorname{Var}(x) \\
& =b^{2} \operatorname{Var}(x)
\end{aligned}
$$

4.3 Expectation, Variance and Moments

Calculation rules

- $\operatorname{Var}[a]=0 \quad E(a)=a$

$$
\operatorname{Var}(a)=E[(a-\underbrace{E(a)}_{=a})^{2}=0
$$

4.3 Expectation, Variance and Moments

Calculation rules

- $\operatorname{Var}[a]=0$

$$
\begin{aligned}
& \text { - } \operatorname{Var}[x+a]=\operatorname{Var}[x] \\
& E[(x+a)-\underbrace{\left.E(x+a))^{2}\right]}=E\left[(x+a-E(x)-a)^{2}\right] \\
& =E(x)+a=E(x)+\underbrace{E(a)}_{=a}=E\left[(x-E(x))^{2}\right] \\
& =\operatorname{Var}(x)
\end{aligned}
$$

4.3 Expectation, Variance and Moments

Calculation rules

- $\operatorname{Var}[a]=0$
- $\operatorname{Var}[X+a]=\operatorname{Var}[X]$
- $\operatorname{Var}[b X]=b^{2} \operatorname{Var}[X]$
- $\operatorname{Var}[a+b X]=b^{2} \operatorname{Var}[X]$
important result:
$\operatorname{Tar}[X]=E^{[\times 2]}-E[X]^{2}$
4.3 Expectation, Variance and Moments

Calculation rules

- $\operatorname{Var}[a]=0$
- $\operatorname{Var}[X+a]=\operatorname{Var}[X]$
- $\operatorname{Var}[b X]=b^{2} \operatorname{Var}[X]$

$$
\begin{aligned}
& \bullet \operatorname{Var}[a+b X]=b^{2} \operatorname{Var}[X] \\
&=E[(a+b x-\underbrace{E(a+b x))^{2}}]=E\left[(a x+b x-\not a-b E(x))^{2}\right] \\
&=a+b E(x)+E(b x)
\end{aligned}=E\left[(b(x-E(x)))^{2}\right] \quad=b^{2} E\left[(x-E(x))^{2}\right]=b^{2} \operatorname{Var}(x)
$$

4.3 Expectation, Variance and Moments

Calculation rules

- $\operatorname{Var}[a]=0$
- $\operatorname{Var}[X+a]=\operatorname{Var}[X]$
- $\operatorname{Var}[b X]=b^{2} \operatorname{Var}[X]$
- $\operatorname{Var}[a+b X]=b^{2} \operatorname{Var}[X]$
important result:
$\operatorname{Var}[X]=E\left[X^{2}\right]-E[X]^{2}=E\left[(X-E(X))^{2}\right]$
4.3 Expectation, Variance and Moments r.v. constantVariance

$$
\begin{aligned}
& \operatorname{Var}(x)=E\left[(x-E(x))^{2}\right] \\
& \text { multiplyout }=\int_{0}^{\infty}(x-E(x))^{2} f_{x}(x) d x=\int\left(x^{2}-2 x E(x)+E(x)^{2}\right)_{x}(x) d x \\
& \text { seperate } \\
& \text { constenits } \\
& \text { outside }=\int x^{2} f_{x}(x) d x-\int 2 x E(x) f_{x}(x) d x+\int E(x)^{2} f_{x}(x) d x \\
&=\int x^{2} f_{x}(x) d x-2 E(x) \underbrace{\int x x^{x}(x) d x}_{=E(x)}+E(x)^{2} \int_{x} \int_{x}(x) d x \\
& \text { famitian }=1 \\
& \text { terms }=E\left(x^{2}\right)-2 E(x) \cdot \underbrace{E(x)^{2}}_{E(x)}+E(x)^{2} \cdot 1 \\
&=E\left(x^{2}\right)-E(x)^{2}
\end{aligned}
$$

4.3 Expectation, Variance and Moments

Standardization of a random variable X

$$
\begin{aligned}
& \text { able } x \\
& y= x-E(x)=x-\mu \\
& \text { center } E(y)=
\end{aligned}
$$

Let
center $E(Y)=0$

$$
z=\frac{x-E(x)}{\sqrt{\operatorname{var}(x)}}
$$

$$
\begin{aligned}
& \operatorname{Var}(y)=\operatorname{Var}(x) \\
& g(X)=\frac{x-\mu}{\sigma}=z_{a}+b x \quad \begin{array}{r}
\operatorname{Var}(Y)=\operatorname{Var}(X) \\
\text { standardizatich }
\end{array} \\
& z=\frac{x-\mu}{\sigma}=\frac{\widetilde{-\mu}}{\sigma}+\frac{\widetilde{1}}{\sigma} x=a+b X \\
& E(z)=0 \quad \operatorname{Var}(z)=1
\end{aligned}
$$

4.3 Expectation, Variance and Moments

Standardization of a random variable $X^{E\left[\frac{\sigma}{2}\right]}=\frac{1}{\sigma}[\underbrace{E(x)-E(\mu)}_{=0}]=0$
Let

$$
\begin{aligned}
g(X) & =\frac{x-\mu}{\sigma}=Z^{\operatorname{Var}\left[\frac{x-\mu}{\sigma}\right]}=\begin{array}{l}
\frac{1}{\sigma^{2}} \operatorname{Var}[X-\mu] \\
Z
\end{array}=\frac{x-\mu}{\sigma}=\frac{-\mu}{\sigma}+\frac{1}{\sigma} x
\end{aligned}
$$

$\Rightarrow E[Z]=0 \quad$ and $\quad \operatorname{Var}[Z]=1$

4.3 Expectation, Variance and Moments

Chebychev Inequality

For any random variable X with finite expected value μ and finite variance $\sigma^{2}>0$ and a positive constant k

$$
\begin{aligned}
& \sqrt{\operatorname{Var}(X)}=\sigma \\
& P(\mu-k \sigma \leq X \leq \mu+k \sigma) \geq 1-\frac{1}{k^{2}} \\
& E(X)=\mu
\end{aligned}
$$

convergence in probability

4.3 Expectation, Variance and Moments

Skewness and Kurtosis

Central moments of a random variable:

$$
\begin{array}{ll}
\mu_{r}=E\left[(X-\mu)^{r}\right] & =\int_{-\infty}^{\infty}(x-E(x))^{r}-f x(x) d x \\
\text { explode } & \rightarrow \text { integral diverges }
\end{array}
$$

as r grows, μ_{r} tends to explode
Solution: normalization

$$
E(x)=\int_{-\infty}^{\infty} x \frac{f_{x}(x) d x}{+}
$$

4.3 Expectation, Variance and Moments

Skewness and Kurtosis

Central moments of a random variable:
$\gamma=0$ symmetric
$\gamma>0$ right-siened

$$
\mu_{r}=E\left[(X-\mu)^{r}\right]
$$

as r grows, μ_{r} tends to explode
Solution: normalization

- skewness coefficient: $\gamma=\frac{E\left[(X-\mu)^{3}\right]}{\sigma^{3}}$
- kurtosis: $\kappa=\frac{E\left[(X-\mu)^{4}\right]}{\sigma^{4}}$
often reported as excess kurtosis $\kappa-3$

4.4 Quantile

Quantile

$q \%$ of the probability mass of a random variable is left of $x(q)$.
Example: Risk measure Value-at-risk (VaR)

4.5 Specific probability distributions

The normal distribution
X is a Gaussian or normal random variable with parameters μ and σ^{2} if its density function is given by

4.5 Specific probability distributions

The normal distribution

X is a Gaussian or normal random variable with parameters μ and σ^{2} if its density function is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

denoted $X \sim N\left(\mu, \sigma^{2}\right)$
Linear transformation is also normally distributed:
If $X \sim \mathbb{N}\left(\mu, \sigma^{2}\right)$, then $a+b X \sim N\left(\left(a+b \mu, b^{2} \sigma^{2}\right)\right.$.
$E(a+b x) \quad \operatorname{Var}(a+b x)$
$=a+b E(x)=b^{2} \operatorname{Var}(x)$
4.5 Specific probability distributions

Standardization of X leads to standard normal distribution:

quartile

1. quartile of z
$z[q]$ Thus, if $X \sim N(\mu, \sigma)$, then $f(x)=\frac{1}{\sigma} \Phi\left(\frac{x-\mu}{\sigma}\right)$.

2. standardize
3. table table

$$
\begin{aligned}
& (\otimes)=1-0 \\
& F(-a)=1-F(a)
\end{aligned}
$$

4.5 Specific probability distributions

Normal distribution $\quad X \sim N\left(\mu, \sigma^{2}\right)$ symmetry:
ex: $\quad P(x \leq 2)$

$$
\Phi(-z)=1-\Phi(z)
$$

zation

$$
P(\frac{x-\mu}{\underbrace{\sigma}_{z}} \leq \frac{2-\mu}{\sigma})=P\left(z \leq \frac{2-\mu}{\sigma}\right)=\bar{\Phi}\left(\frac{2-\mu}{\sigma}\right)
$$

quartiles:

$$
\dot{z}[q]=-z[1-q]
$$

$z[q]$ from $x[q]=z[q] \cdot \sigma+\mu \quad$ ex:

$$
\begin{aligned}
& e x: \\
& z[0.05]=-z[0.95]
\end{aligned}
$$ table

4.5 Specific probability distributions
t-distribution

4.5 Specific probability distributions

The χ^{2} distribution:

X is said to be $\chi^{2}(n)$ with n degrees of freedom if

$$
f_{X}(x)= \begin{cases}\frac{x^{\frac{n}{2}-1}}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} e^{-\frac{x}{2}} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

If $\boldsymbol{z} \sim N(0,1)$, then $x=\mathcal{Z}^{2} \sim \chi^{2}(1)$.
If \boldsymbol{z}_{i} are aid $N(0,1)$, then $\sum_{i=1}^{n} z_{i}^{2} \sim \chi^{2}(n)$.
$z_{1}, z_{2} \sim N(0,1)$

$$
z_{1}^{2}+z_{2}^{2} \sim x^{2}(2)
$$

